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ABSTRACT
Given a collection of m continuous-valued, one-dimensional
empirical probability distributions {P1, . . . , Pm}, how can
we cluster these distributions efficiently with a nonparamet-
ric approach? Such problems arise in many real-world set-
tings where keeping the moments of the distribution is not
appropriate, because either some of the moments are not
defined or the distributions are heavy-tailed or bi-modal.
Examples include mining distributions of inter-arrival times
and phone-call lengths. We present an efficient algorithm
with a non-parametric model for clustering empirical, one-
dimensional, continuous probability distributions. Our al-
gorithm, called ep-means, is based on the Earth Mover’s
Distance and k-means clustering. We illustrate the utility
of ep-means on various data sets and applications. In par-
ticular, we demonstrate that ep-means effectively and ef-
ficiently clusters probability distributions of mixed and ar-
bitrary shapes, recovering ground-truth clusters exactly in
cases where existing methods perform at baseline accuracy.
We also demonstrate that ep-means outperforms moment-
based classification techniques and discovers useful patterns
in a variety of real-world applications.

1. INTRODUCTION
We address the following problem: given a collection of

m continuous-valued, one-dimensional empirical probability
distributions {P1 . . . Pm}, how can we cluster the distribu-
tions efficiently with a nonparametric approach? For exam-
ple, consider airlines and their business models. Each airline
operates a number of routes. The distances of these routes
comprise an empirical distribution for each carrier. Can we
use these distributions to discover a small number of typical
business models for airlines? Several approaches are possi-
ble. For example, we could assume that the distributions
are from some known family of (analytical) distributions,
and find the best-fit parameters for each Pi. Then, the dis-
tributions can be clustered in the parameter space using
some existing spatial clustering technique. However, when
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the various airlines have different underlying distributional
families, then this approach is not suitable.

We postulate that an effective clustering algorithm for em-
pirical, continuous-valued, one-dimensional probability dis-
tributions should be (1) efficient, (2) nonparametric, (3)
empirical, (4) distance-based, and (5) interpretable. Let’s
discuss each of these in turn. Efficient: Let ni be the num-
ber of observed values in Pi, and N =

∑
ni. Then the

algorithm should be subquadratic in N−i.e., an O(N2) or
worse algorithm is unacceptable. Nonparametric: Ide-
ally, an effective clustering algorithm does not depend on
choices of model size. Our proposed method uses k-means,
a parametrized clustering algorithm for which many exten-
sions have been proposed that eliminate the manual model
selection. Empirical: If it is known that the observed
distributions come from a given analytical family, then it
makes sense to summarize each Pi by a parameterized best-
fit distribution. However, we are interested in a general-
purpose algorithm that can successfully cluster distributions
without knowing the family information. The algorithm
should be agnostic to the types of underlying distributions
involved. Distance-based: There are a number of dis-
similarity measures for distributions, but most of them are
not true distance metrics. Examples include the Kullback-
Leibler (KL) divergence and the Kolmogorov-Smirnov (KS)
statistic. These methods ignore the underlying metric space
from which distributions are drawn, and as such can pro-
duce poor clusters. Interpretable: Given a clustering, we
would like to be able to say something meaningful about why
the data was clustered in a certain way. In traditional (e.g.,
spatial) clustering, this is typically achieved by reporting the
centroid of the cluster. Some techniques, such as multidi-
mensional scaling [8], do not allow for easy interpretation.

We propose a novel algorithm, called ep-means, which
is based on two well-known techniques: earth mover’s dis-
tance (EMD) and k-means clustering. k-means is a well-
studied spatial clustering algorithm that uses expectation-
maximization (EM) to compute k centroids and assign each
observed point to its closest centroid. EMD is a distance
metric on probability distributions. ep-means is a new effi-
cient algorithm, which computes each k-means iteration in
O(N log(N)) runtime, O(N) space, and utilizes EMD.

1.1 Motivating Example
Returning to the example of airline-route distances, we

collected data from openflights.org, which includes routes
for hundreds of airlines as 3-tuples: 〈Route ID, Airline ID,
distance〉. Each route contributes a single observation to the



Cluster 1 Cluster 2 Cluster 3
Local and Regional Domestic International

Shenzhen United British Airways
Wizz Air Ryanair Korean Air
Xiamen Delta Emirates

Hellas Jet American Qatar Airways
Sichuan US Airways Transaero

Table 1: EP-MEANS clustering results on the open-
flights.org airline-route data. For each cluster, the
top five airlines (by route count) are listed.

empirical distribution for its airline (i.e., we do not consider
how many flights per day fly each route). Figure 1 high-
lights the results of ep-means when applied to the airline-
route data. Each cluster is labeled by the airline in that
cluster with the most routes. The solid lines indicate cluster
centroids (described in Section 3.2). Dashed lines indicate
cluster averages−i.e., the normalized sum of all distributions
in the cluster. For a given cluster, the difference between its
centroid and its average distribution gives a rough idea of
how “good” the cluster is−i.e., how closely its constituents
resemble each other. Table 1.1 lists the top five airlines (by
route count) in each cluster. Clusters are labeled by hand
based on the approximate business models associated with
their constituent airlines.
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Figure 1: (Best viewed in color.) Results of cluster-
ing airlines based on route lengths. Solid lines are
cluster centroids by EP-MEANS; dashed lines are
average cluster distributions. Clusters are labeled
by the busiest (most routes) airline in the cluster.
Each distribution is scaled vertically to emphasize
shape; the total area under each distribution is one.

The results on our motivating example demonstrate sev-
eral desirable aspects of ep-means. Examining the air-
lines included in each cluster, we see that they are roughly
grouped by business model. Note that the distributions do
not appear to come from the same distributional family, sug-
gesting that analytical distributions may not be appropriate
in this application. For instance, Cluster 3 is mostly ma-
jor international airlines without as much regional service
as domestic airlines. The average distribution (shown as a
histogram in Figure 1) has a tail of longer flights, This makes
sense, since major world cities are expected to be distributed
roughly evenly throughout the globe. In contrast, Clusters 1

and 2 include airlines with more regional flights. This leads
to increased probability mass in the sub-1000 mile range.
Cluster 1 is comprised of short-hop airlines with almost ex-
clusively local and regional service, while Cluster 2 contains
domestic airlines with some international flights. Thus, dis-
tributional clustering can be a very powerful analysis tool for
organizing unstructured data. Not only is it able to discover
clusters with a variety of distributional shapes, but it is also
interpretable. The centroids and average distributions give
us insight into what behaviors the clusters represent.

Contributions. (1) We present ep-means: an efficient,
nonparametric, empirical, distance-based, and interpretable
algorithm for clustering a collection of m continuous-valued
one-dimensional empirical probability distributions. (2) Our
extensive empirical study demonstrates the utility, efficacy,
and effectiveness of ep-means.

The outline of the paper is as follows: background and
preliminaries in Section 2, proposed method in Section 3,
experiments in Section 4, related work in Section 5, and
conclusions in Section 6.

2. BACKGROUND AND PRELIMINARIES

2.1 Background
The primary decision that one must make when cluster-

ing distributions is how to represent the distributions and
what dissimilarity measure is appropriate. Here we describe
two simple approaches that will serve as baselines for our
experiments. See Section 5 for more details.

Parameter Clustering. One of the simplest approaches
to clustering empirical distributional data {P1, . . . , Pm} is to
fit a known analytical distribution to each Pi. For example,
one can assume that each Pi is drawn from a Gaussian dis-
tribution. In that case, each distribution can be replaced by
a best-fit Gaussian distribution with two parameters: mean
and variance. Instances can be represented as points in R2

and clustered using any spatial clustering method (e.g., k-
means). Parameter clustering is simple and can be power-
ful, but it fails when the distributional family is unknown or
hard to express with a small number of parameters. While
it has the advantage of using a true distance metric (Eu-
clidian distance), it is not immediately obvious how to scale
the dimensions properly. Section 4.2 presents experimental
results supporting this claim.

Histogram Binning. A second simple approach is to
divide the values of the distribution into B bins, and en-
code each empirical distribution as a B-dimensional vector
of real values. Once these vectors are computed, one can
simply apply existing spatial clustering techniques. This
approach has several benefits. It is fast and does not re-
quire explicit knowledge about the types of distributions in
the collection. It also allows one to directly apply spatial
clustering algorithms, which have been studied extensively.
However, binning has drawbacks that make it inappropriate
for effective clustering. First, the number, size, and locations
of the bins must be determined. For distributions with long
tails, equally-spaced bins may not be effective as they tend
to lose information about values near zero. Second, infor-
mation about how far apart different bins are is lost. Each
bin is considered to be an orthogonal direction in RB , when
in reality some bins are near each other and others are not.
This can lead to poor clusters (see Sections 4.2 and 5).



2.2 Preliminaries
Earth Mover’s Distance (EMD) is a dissimilarity met-

ric that meets all the requirements in Section 1. Given two
probability distributions P and Q, the EMD [10] is most
easily understood as the total area between their cumula-
tive distribution functions (CDFs). Recall that the CDF of
a distribution is a nondecreasing function CDF (x) whose
value at any real number x is the probability that a draw
from the distribution will be less than or equal to x.

EMD(P,Q) =

∫ 1

x=0
|CDF−1

P (x)− CDF−1
Q (x)| (1)

We use Equation 1 to compute the EMD between two
distributions. If we consider the two distributions as piles
of earth, then EMD computes the minimum total distance
that earth must be moved to transform one into the other.

We use k-means clustering with EMD as the distance
metric to cluster distributions. We describe model selection
and initialization in Section 3.

3. PROPOSED METHOD
We propose ep-means (where ep is short for empirical

probability), a novel and efficient algorithm for clustering
empirical, real-valued univariate probability distributions.
ep-means combines EMD and k-means in a novel, scal-
able algorithm that does not rely on any a priori knowledge
about the shapes of the observed distributions.

3.1 Applying k-means to Distributions
ep-means is an efficient combination of k-means and EMD.

Distributions {P1 . . . Pm} are the data instances given to
k-means, and rather than minimizing the squared Euclid-
ian distance to a centroid point in Rn, ep-means minimizes
the squared EMD to a centroid distribution. The choice of
centroid, similar to k-means, is one that minimizes within-
cluster squared error. We utilize kmeans++ [2] to initialize
cluster centers. See Section 3.4 for how we select the model
size k.
ep-means consists of two main steps: centroid compu-

tation and distance computation. Centroid computation is
straightforward, but distance computation can be slow if not
carefully optimized. We first present some technical details
on the way EMD is computed, then describe each of these
steps in Sections 3.2 and 3.3.

3.2 Centroid Computation
Given a collection of distributions {P1 . . . Pm}, their cen-

troid for the purposes of k-means clustering is another em-
pirical distributionQ such that

∑m
i=1 (EMD(Pi, Q))2 is min-

imized. The intuition behind computingQ is based on Equa-
tion 1. If we consider the CDFs of all Pi’s simultaneously,
the value of CDFQ at any given height y is just the mean
value of all Pi’s at height y.

To illustrate this further, let ri = min({v|Pi(v) > 0}) and
s = min(Pi(ri)). So for 0 ≤ x < s, CDF−1

Pi
(x) = ri. The

inverse CDF of Q should also be constant on this interval. If
CDF−1

Q (x) = y for 0 ≤ x < s, then the contribution of this
interval to EMD(Pi, Q) is just s(ri−y) by Equation 1. The
total contribution of this interval to within-cluster squared
error is s2

∑m
i=1 (ri − y)2, which is minimized by choosing

y = 1
m

∑m
i=1 ri.

Applying this logic to the rest of the probability axis,
we see that Q should be selected such that CDF−1

Q (x) =

1
m

∑m
i=0 CDF

−1
Pi

(x). Figure 2 shows the centroids for five
clusters of distributions on IP traffic data (see Section 4
for details). The distributions and centroids are shown as
CDFs. The darker CDFs are the centroids. Observe that for
a given centroid, at any height y (cumulative probability) its
x-value is the mean of all constituent x-values at y.

Distribution Values 

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

Cluster 5 

Figure 2: Five EMD centroids on IP traffic data.
Each color above is a group of distributions, shown
as CDFs. Overlaid are corresponding centroids (in
darker lines), also represented as CDFs. The x-value
of a centroid at height y is the average of the x-
values of its constituents at y. This minimizes total
(squared) EMD from all constituent distributions.

Q can be computed in O(N log(N)) time for m distribu-
tions andN total observed values. The algorithm is straight-
forward. Initially, set CDF−1

Q (0) =
1
m

∑m
i=1 CDF

−1
Pi

(0). Then use a scanline to update CDF−1
Q

each time the inverse CDF of any Pi increases. This requires
sorting all such values, at O(N log(N)) time complexity.

We avoid performing a full sort on every EM iteration by
initially sorting each inverse CDF and using a heap to keep
track of the next value for each distribution in the cluster.
This reduces the per-iteration runtime to O(N log(m)).

3.3 Distance Computation Between Pairs of Dis-
tributions

The näıve implementation of distance computation is very
similar to centroid computation. Scan through the inverse
CDFs of both distributions simultaneously, and at each value
for which an inverse CDF increases, compute the area of the
rectangle that was just traversed.

This is enough to perform ep-means, and runs in O(|P |+
|Q|) time if we do not count the time it takes to sort the
CDFs. However, note that in the worst case, the centroid Q
has mass at N distinct values. This means that for each of
the m distributions, we have to call this function at a cost
of O(N+ |Pi|). The resulting runtime is O(mN+N log(N))
which may be unacceptable when m is large.

It is possible to compute all distances to a centroid in
O(N log(N)) time by applying an optimization to the afore-
mentioned algorithm. The general idea is to do a single scan
of the centroid’s inverse CDF, updating each Pi’s EMD in-
crementally along the way. To this end, we must split the



inverse CDF of each distribution into intervals along the
probability axis. The intervals associated with a single dis-
tribution P and a centroid Q are defined as follows:

1. The first interval starts with x = 0; the last interval
ends with x = 1.

2. A new interval starts at any x in which the value of
CDF−1

P changes.

3. A new interval starts at any x where CDF−1
Q starts

below CDF−1
P and ends above it.

Since all inverse CDFs are non-decreasing, these intervals
can be determined in O(N log(N)) time (after sorting the
CDFs) by doing a single scan through Q. To accomplish
this, we first construct a map from the set of values {y | ∃i :
Pi(y) > 0} to subsets {Pi | Pi(y) > 0} that have mass at
those values. Then we sort these y values and scan through
Q’s inverse CDF. At each step, we check to see if Q crossed
a y value in our map; and if so, we check each Pi at that
y value to determine if it crosses Q at that interval. See
Figure 3 for an illustration of intervals. The black inverse
CDF corresponds to the centroid, with lots of steps. The
red inverse CDF corresponds to a single Pi.
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Figure 3: (Best viewed in color.) Intervals for EMD
computation. Green lines indicate interval bound-
aries.

Given our definition of the intervals (enumerated above),
the following observation holds:

Observation 1. Within a given interval, either CDF−1
Q ≥

CDF−1
P everywhere, or CDF−1

Q ≤ CDF−1
P everywhere.

Assume without loss of generality that the former (i.e., CDF−1
Q ≥

CDF−1
P ) is true on some interval I of the inverse CDFs. To

compute the EMD contribution in I, let us define PI as the
(constant) value of P on I and wI as the width of I. The
EMD contribution on I is equal to the area between the in-
verse CDFs of P and Q on I. If the area under Q on I is
AI(Q), then the EMD contribution is simply AI(Q)−wIPI .1

Now let us focus on computing AI(Q). On I, the inverse
CDF of Q takes a number of values (q1I . . . q

t
I), and each

value has a “width” (x1I . . . x
t
I). Clearly

AI(Q) =
t∑

i=1

qiIx
i
I (2)

1This in true because we choose intervals for which Obser-
vation 1 holds.

which can be rewritten as:

AI(Q) =
∑
J≤I

t∑
i=1

qiJx
i
J −

∑
J<I

t∑
i=1

qiJx
i
J (3)

Here, J < I includes all intervals to the left of interval
I. The first term AI+(Q) is simply the total area under
CDF−1

Q from 0 to the end of I; and the second term AI−(Q)

is the total area under CDF−1
Q from 0 to the beginning of

I. So to compute AI(Q), we simply scan from left to right
in the inverse CDF of Q keeping track of the current total
area AI+(Q) and the area at the beginning of the current
interval AI−(Q). This requires constant space since we can
throw away old values of A as we go along. Thus, the final
EMD between P and Q is simply:

EMD(P,Q) =
∑
I

|AI+(Q)−AI−(Q)− wIPI | (4)

The important insight here is that we can process inter-
vals for multiple Pi’s simultaneously with only a single scan
through Q. Any time we hit the end of an interval for some
Pi, we update its EMD as described above and record the
current value of Ai

I+(Q) for Pi, which we will use next time
we see Pi as Ai

J−(Q) for the interval J that occurs after I.
Runtime Complexity with Optimization. The ini-

tial sorting of CDFs takes O(N log(N)) time but only needs
to be performed once and can be re-used in all subsequent
iterations of k-means. Scanning through the intervals can
be done in O(N log(m)) time by maintaining a heap with
m + 1 entries. The heap has one entry per Pi (which con-
tains the end of the current interval on Pi) and one entry
for Q (which contains the next value of CDF−1

Q to be pro-
cessed). The total number of intervals for a given Pi is at
most 2|Pi|, since Q can only “catch up” to Pi at most one
time for every step in the inverse CDF of Pi (since both are
non-decreasing functions). The total number of insertions
and removals from the heap is at most 6N . Q contributes
N insertions and N removals, at most. Each Pi can con-
tribute at most 2|Pi| insertions (one per interval) and 2|Pi|
removals. Since the heap is never bigger thanm+1 elements,
the total time to compute all EMDs is O(N log(m)) per it-
eration, which is potentially a large improvement over the
O(mN) näıve approach. Thus, the total runtime of this op-
timized algorithm is O(N log(N)+kTN log(m)) to compute
centroids and distances, assuming T iterations of k-means.

3.4 Model Selection
To determine the appropriate number of clusters, we adopt

a stability-based model selection approach introduced in [3].
We use Variation of Information (VI ; see Section 4.2) [7] to
define similarity between two clusterings. Specifically, for a
given model size k, we define S(C1, C2) = 1−(V I(C1, C2)/2 log(k)).
S is minimized at 0 when mutual information between the
clusters is minimized, and maximized at 1 when the clus-
ters are identical. We choose not to correct for chance [13],
because computing expected mutual information is compu-
tationally prohibitive on very large inputs.

For each k (up to some kmax), we compute the mean sta-
bility as follows. For parameter β ∈ (0, 1], select dβme dis-
tributions from the input (uniformly at random, with re-
placement) and compute k ep-means clusters on this sub-
set. Using the resulting centroids, assign the full set of input
distributions to clusters. Repeat this procedure t times (for
some parameter t). Then compute S(Ci, Cj) for each pair of
clusterings to determine Sk, which is the average similarity



(a.k.a. stability) for model size k. The selected k is simply
the model size that maximizes Sk. Note that S1 = Sm = 1,
so it is necessary to restrict k to a reasonable range. We
demonstrate the effectiveness of this approach in Section 4.1.

3.5 Discussion
Other useful optimizations are: (1) do not update the

centroid of a cluster that did not change in an iteration;
and (2) do not recompute distances to such a centroid. In
practice, these reduce runtime significantly (although not
asymptotically).

ep-means cannot easily be modified to handle multivari-
ate distributions. First, exact computation of EMD for em-
pirical distributions in two or more dimensions is prohibitive.
Second, if the different dimensions have fundamentally dif-
ferent meanings, it may not be clear how to scale them ap-
propriately. Recall that EMD is defined in terms of the
underlying distance metric on the observed values. Operat-
ing in more than one dimension may result in an underlying
metric that makes little sense.

4. EXPERIMENTS
So far, we presented results on our motivating example:

the airline route data. Here, we (1) apply ep-means to
several distributional clustering problems; (2) present re-
sults on synthetic data that demonstrate ep-means’s ability
to reconstruct ground-truth clusters even when they have
complicated analytical forms; (3) show that ep-means can
be effective at clustering hosts in IP traffic data; (4) demon-
strate the scalability of ep-means on synthetic data; and
(5) discuss some of ep-means’s limitations.

4.1 Model Selection
We apply ep-means to a pair of synthetic data sets to

measure the efficacy of its model selection. For each exper-
iment, we use β = 0.7 and t = 5 (for a total of 20 com-
parisons per model size). Each data set is comprised of 8
ground-truth clusters with 10 distributions per cluster (i.e.,
m = 80). Each distribution is Gaussian (with mean µ and
standard deviation σ). We draw 10,000 samples from each
distribution. The ground-truth clusters are as follows. For
the first experiment, each cluster has σ = 0.5 and µ = 4i,
where 1 ≤ i ≤ 8. For the second experiment, the first four
groups have σ = 0.5 and µ = 4i, where 1 ≤ i ≤ 4 and
the last four groups have σ = 0.005 and the same means.
Figure 4 shows the results of ep-means with model selec-
tion on these data. For the simpler problem, we see a single
peak at k = 8. For the overlaid problem, we see a secondary
peak at k = 4 corresponding to the clustering that groups
distributions with the same mean but different variances.

Recalling the airline example in Section 1.1, the only model
size with stability over 0.8 is k = 3. A secondary peak
around k = 8 presents another potentially useful model. The
model with 8 clusters groups the airlines based on less signifi-
cant differences in their business models. For example, some
domestic airlines (e.g., United) provide international service
as well, while others (e.g., Southwest) do not. Additionally,
Cluster 3 gets split into true international commuter airlines
and long-haul, low-cost airlines.

4.2 Synthetic Experiments
Can ep-means recover clusters when we know the un-

derlying groupings in the input data? To answer this, we
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Figure 4: Model selection in synthetic data. Each
data set has 8 clusters. When the clusters are over-
laid, we see a secondary spike at k = 4.

perform the following synthetic experiment. We generate 10
mixture distributions. Each mixture is an analytical proba-
bility distribution, chosen via a number of randomized steps.
First, the number of component distributions for each mix-
ture is chosen between 1 and 5. Each component distribu-
tion can be Uniform, Gaussian, Pareto, Exponential, or Beta
(chosen uniformly at random). Once a family is selected, the
parameters to the component are selected at random within
a range. Each component distribution in the mixture is
weighted uniformly at random, so each mixture distribution
is the weighted sum of each of its component distributions.
Then, we scale each mixture distribution so that it has mean
0 and standard deviation 1. Under this setup, the näıve ap-
proach of clustering by mean and standard deviation will
not perform well.

After generating 10 mixtures, we instantiate m = 1000
instances of each mixture. For each instance, we draw d
values from its underlying mixture distribution, for a variety
of d. Thus, each instance has an empirical, one-dimensional,
continuous-valued distribution. Then, we apply ep-means
with k = 10. For this experiment, we run ep-means 10
times with different initial centroids.

We compare ep-means to two baseline approaches. In
the first baseline approach (a.k.a. the moments method), we
map each instance to a 4-tuple of moments: (µ, σ, γ, κ) cor-
responding to the mean, standard deviation, skewness, and
kurtosis of the observed empirical distribution. We treat
each instance as a point in R4 corresponding to its moments.
We then apply k-means with k = 10 and run 10 trials. In
the second baseline approach (a.k.a. the bins method), we
use fixed-width bins to construct a histogram. We compute
the minimum and maximum values observed across all dis-
tributions, and generate 10 equal-width bins spanning this
range. In this case, each instance is treated as a point in
R10. We perform 10 rounds of k-means with k = 10.

To compare the clusterings, we use the Variation of Infor-
mation (V I) measure [7], which is related to mutual infor-
mation. Specifically, it is defined as V I(C1, C2) = H(C1) +
H(C2) − 2I(C1, C2), where H(C) is the entropy of C and
I(C1, C2) is the mutual information between C1 and C2.
We compute V I(Cmethod, T ) where Cmethod are the clusters
described above for each method and T is the ground-truth
clustering of instances into their distributional families.
V I is bounded below by 0, and achieves this value only

when the two clusters are identical. It is bounded above by



log2(m), where m is the number of objects being clustered.
However, a tighter upper bound is available here because
we are forcing the clusterings to have size 10. With that
restriction, the upper bound is 2 log2(10) ≈ 6.64. As a point
of reference, if one were to choose a clustering where all
instances are in a single cluster Call, then we would have
V I(Call, T ) = log2(10) ≈ 3.32.

Figure 5 shows the results of this experiment for a vari-
ety of choices for d. We report the minimum, mean, and
maximum V I values for each method. ep-means dominates
the baseline methods, especially as the number of samples
increases. Once the number of samples is sufficiently high,
the baseline methods fail to improve past the performance
of Call. This is most likely due to very large values being
generated by some of the long-tailed distributions. For the
moments method, very large values in the third and fourth
moments may dominate the clustering. For the bins method,
these large values force all of the small observed values into
a single bin near zero. This causes most of the instances to
be grouped into a single cluster.
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Figure 5: EP-MEANS recovers ground-truth clus-
ters more effectively than clustering based on mo-
ments or histogram. The lower the Variation of In-
formation (V I), the better. The solid line is the
mean V I value; the dashed lines represent the min-
imum and maximum V I values.

4.3 IP Traffic Classification
We have shown that ep-means can capture information

about the shape of empirical probability distributions, which
distributional moments and binning approaches cannot cap-
ture. Now we show that this representational advantage
translates into a practical advantage in a real-world appli-
cation: classification of IP network traffic. Specifically, we
test the hypotheses that ep-means-based features provide
more predictive power in traffic classification than features
from moments clustering or histogram clustering.

We test these hypotheses using packet trace data collected
from an enterprise IP network over a one hour period. This
data set contains ∼5K hosts and ∼600K network connec-
tions. For each host, we use packet signatures to identify
the dominant traffic type (peer-to-peer=72%, Web=23%,
DNS=5%). We discard hosts with other dominant traffic
types (e.g., games, mail, etc) and any host with fewer than
10 communications. We then collect 23 traffic-based features
for each connection of each host (e.g., # bytes transferred, #
packets, max inter-arrival time between packets, etc). Since
each host has many connections, this yields an empirical dis-

tribution of values for each traffic feature for each host. We
compare three approaches to modeling these distributions:
(1) histogram with 10 equal-width bins, (2) moments clus-
tering based on mean and variance of the distributions, and
(3) ep-means with 10 distribution clusters, where each indi-
vidual distribution is represented by a vector of 10 distances
(one to each cluster centroid).

We use each of the three representations of the 23 traf-
fic features to predict the traffic type of each host in the
network. We use 10-fold cross-validation and the R ran-

domForest classifier. Figure 6 shows that ep-means out-
performs moments and histogram clustering across nearly
all of the single features. ep-means performs either sig-
nificantly better than (14/23) or equivalent to (9/23) mo-
ments clustering across all features. ep-means significantly
outperforms histogram clustering for 20 features, ties for
one, and performs worse for two. We assess significance us-
ing a paired two-tailed t-test with α = 0.05. The average
performance across all single features is: ep-means =83%,
moments clustering=80%, and histogram clustering=76%.
These results indicate that: (a) the shape of the feature dis-
tributions matters and (b) ep-means is a more effective rep-
resentation of distributional shape than a histogram of the
same size. Moreover, we note that by combining informa-
tion from all 23 features, moments and histogram clustering
are able to make up for their representational disadvantage
and close the gap somewhat on ep-means. However, even
in this case, ep-means maintains a statistically significant
advantage over both.
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Figure 6: (Best viewed in color.) IP Traffic classi-
fication accuracy for three representations of em-
pirical probability distributions based on (1) his-
togram clustering, (2) moments clustering, and (3)
EP-MEANS centroid distances. EP-MEANS is the
top performer for both the complete set of features
and on average across individual features.

4.4 IP Traffic Characterization
Here we take the same IP traffic data as in the previous

section and use ep-means to characterize it. Specifically,
we take each observed host (IP address) as an instance; the
observed value is the duration of its IP connections. Fig-
ure 2 in Section 3.2 depicted the discovered clusters for this
data, where each band represented a cluster and the dark
CDF is the centroid of that cluster. Another way to look
at the centroids is as histograms; see Figure 7. Values of
k greater than 5 seem to split these clusters into smaller
clusters, which are more focused on given ranges of values.

This experiment is harder to interpret, since we do not



have any ground-truth about the observed hosts. However,
it illustrates some insights into IP communication patterns.
First, note that the cluster centroids do not appear to come
from the same distributional family. Cluster 2 seems to con-
sist only of hosts whose connections have almost zero length.
These are most likely failed connections. Clusters 1 and 4
appear to be some sort of truncated Gaussian distribution,
with the truncation happening in opposite directions. Clus-
ters 3 and 5 seem to have similar mean values, but Cluster 3
appears to have mass uniformly spread across a wide range,
while Cluster 5 is more concentrated near the mean.

Note that once these centroids are computed, we can quickly
characterize a new host by simply computing the distance
from the host to each centroid. This operation is signifi-
cantly faster than performing k-means iterations. This sug-
gests a method for change detection and anomaly detection.
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Figure 7: (Best viewed in color.) Centroids for con-
nection duration in observed hosts. The centroids
do not appear to come from the same family of dis-
tributions. Distributions are scaled up to highlight
shape. The total area under each curve is 1.

4.5 Scalability
Using the synthetic distributions from Section 4.2, we an-

alyze the scalability of ep-means. In order to eliminate vari-
ations based on the number of EM iterations, we report the
time taken to generate initial centroids, compute distances
from each distribution to each centroid, and recompute cen-
troids once. Times are averaged over ten trials. Figure 8
shows the runtime of ep-means for a variety of problem
sizes. Times are divided by N log(N), where N is the num-
ber of samples across all distributions in each experiment,
to demonstrate the O(N log(N)) asymptotic runtime.

5. RELATED WORKS
Many dissimilarity measures are available on empirical

probability distributions. We highlight a number of pop-
ular approaches and describe their properties as they relate
to our requirements here. While this is not an exhaustive
list, it captures common shortcomings and illustrates the
reasoning behind our choice of EMD as a clustering metric.

Kolmogorov-Smirnov (KS) Statistic. A popular dis-
similarity measure on distributions is the KS statistic. This
easily computed statistic is the maximum vertical distance
between the CDFs of each distribution. For empirical distri-
butions, the CDF is a step function which increases at each
value that is observed in the distribution. The KS statis-
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Figure 8: Timing results for EP-MEANS synthetic
data. Runtimes are averaged over 10 trials. Dis-
played runtimes are divided by N log(N), where N is
the total number of observations. Our implementa-
tion of EP-MEANS essentially achieves its theoret-
ical runtime complexity.

tic has an undesirable property that renders it incapable of
clustering correctly in even very simple situations. Namely,
KS does not take into account distances in the underlying
space of values. For example, any two distributions which
have all their mass at a single point will have KS statistic of
1 (if the points are distinct), regardless of how far apart the
distributions are. Consider three distributions, each with
all its mass at values 0, 1, and 100 respectively. KS consid-
ers the clustering ((1,2),(3)) equally good as the clustering
((1),(2,3)), although the former is intuitively better.

Kullback-Leibler (KL) Divergence. Another popu-
lar dissimilarity measure for distributions is the KL diver-
gence [6]. It measures the increased cost of encoding samples
from a target distribution when the encoding is based on a
reference distribution. KL divergence has a number of dis-
advantages in this setting. For empirical distributions, it
typically requires binning, which as described above can be
undesirable in certain settings. Most importantly, though,
KL divergence is similar to the KS statistic in that it ig-
nores the underlying space of values. It treats each point
(or bin) in the distribution as an independent value, and as
such cannot correctly cluster the example described above.

Density Estimation. In an attempt to provide identical
support across all distributions, a possible approach is to
smooth the empirical distributions by a technique like Ker-
nel Density Estimation (KDE). In this approach, each obser-
vation is replaced by a kernel : a distribution (e.g., normal,
triangular, etc) centered at the observation and with some
scale parameter. The overall distribution is represented as
the sum of all the kernels. Unfortunately, KDE does not
allow for scalable clustering of distributions. In this work,
we present results in which thousands of distributions are
clustered, each of which has tens of thousands of observed
values. This can lead to very complicated density estimates,
and computing distances (and centroids, for an algorithm
like k-means) is expensive [11].

Multidimensional Scaling (MDS). While not techni-
cally a clustering algorithm, MDS [8] and its variants are
often used to visualize large data sets and can aid in clus-
tering. Classical MDS algorithms take as input an m-by-m
matrix D of distances between each input entity, and use an
O(m3) algorithm to place the points in d-dimensional space.



The points are arranged such that their distances in Rd in
the computed configuration are as close as possible to their
actual distances in D. Faster, approximate algorithms ex-
ist that run in O(r2m) time using r landmark points rather
than processing all pairwise distances. MDS is useful for
visualization and dimensionality reduction, but it has some
shortcomings for our application. First, it does not actu-
ally place the entities in clusters; instead, it simply assigns
them coordinates in Rd. Secondly, it is not obvious how to
interpret the dimensions.

Lévy and Lévy-Prokhorov Metrics. Similar to EMD,
these metrics [14, 15] are on the space of cumulative distri-
bution functions of one-dimensional random variables. The
computational costs of these metrics are not known.

Related Applications of EMD. EMD and other spa-
tially aware (i.e., based on the underlying metric space) dis-
tances have been applied to clustering of points in space [5,
9]. However, in these cases the clusters of points are treated
as distributions and EMD is used to compute/compare these
clusters. This is a fundamentally distinct problem from the
one we address here, which is efficiently clustering distribu-
tions rather than clustering points in space.

Indyk and Price [4] propose a promising approximation
of multi-dimensional EMD using compressive-sensing tech-
niques. However, their work is related to clustering segments
of an image, rather than clustering distributions. This is
similar to the point clustering algorithms described above,
but with histogram bins instead of continuous-valued points.

Shirdonkar and Jacobs [12] approximate EMD for a mul-
tidimensional histogram with B bins in linear time in B.
However, the runtime is exponential in the dimension of the
histogram, restricting the applications to domains with a
small number of dimensions. Our algorithm is restricted to
one dimension, but gives exact EMD in linear time in B if
the distributions are binned. Additionally, there is no clear
path from the algorithm in [12] to execute clustering. For m
distributions with B bins, one would need to compute m2

distances unless there is some way to compute centroids ef-
ficiently. No such algorithm is provided. Applegate et al. [1]
modify the algorithm of Shirdonkar and Jacobs, but as the
authors note it requires m2 distance computations to per-
form clustering. In their experiments, they choose to down-
sample their large dataset due to this runtime complexity.
ep-means provides an efficient way to cluster many distri-
butions at once without ever needing to compute pairwise
distances.

6. CONCLUSIONS
We presented ep-means, a novel algorithm for cluster-

ing univariate, empirical probability distributions. We have
demonstrated that ep-means generates useful clusters in a
variety of application domains, as well as that it satisfies a
number of desirable criteria. Specifically, ep-means is effi-
cient: runtime of the algorithm isO(N log(N)+kTN log(m))
for m distributions, k clusters, T iterations, and N total ob-
served values. ep-means is nonparametric: the algorithm
does not require binning or quantization; and the number
of clusters can be discovered automatically using a num-
ber of existing techniques. ep-means is empirical: input
instances are treated as empirical distributions, rather than
assuming they come from some known analytical family. ep-
means is distance-based: the clusters are based in a true
metric space, which can avoid some counterintuitive results.

ep-means is interpretable: discovered centroids can be vi-
sualized and understood in a natural way.
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